Credit Insurance, Bailout & Systemic Risk

Kaushalendra Kishore (CAFRAL)

CAFRAL & World Bank Conference, 2020

February 26, 2020

Motivation

- Banks made large investments in real estate and hedged their investments using CDS contracts
- AIG issued CDS on large scale (\$533 bn. as of Dec 2007)
- AIG made large investments in real estate (\$85 bn. as of Dec 2007)
 ⇒ lack of diversification
- Systemically important firm \Rightarrow AIG Bailout- \$182 bn.
- Counterparty banks got the benefit of bailout

Counterparty	Funds transfered (\$ bn.)
Goldman Sachs	12.9
Societe Genrale	11.9
Deutche Bank	11.8
Barclays	8.5

Questions

- What is the impact of expectation of bailout on investment strategy of counterparty banks?
- Why did AIG underprice credit risk?
- Why did AIG invest in real estate, the very sector it was insuring?

Summary of model and results

Banks invest and choose the correlation of their investments

Write CDS contracts with a competitive firm

Results:

- Banks make correlated investments (systemic risk)
- Insure for the good aggregate state and rely on bailout in bad aggregate state (underpriced contracts)
- Insurance firm invests in same sector as banks

Policy implications:

- Cap on the size of insurance firm prevents systemic risk
- Central clearing counterparty may help in creating systemic risk

Intuition for results

Why correlated investments and underpriced contracts?

- Regulator bails out the insurance firm to save the banks
- ► Crisis resolution policy is **imperfectly targeted** ⇒ Banks want their assets to fail *exactly* at the time of bailout ⇒ Correlated investments
- Reduces the cost of insurance ex-ante

Why insurance firm invests in same sector?

 Maximize the likelihood that its assets perform well when banks are also performing well

Comparison with Acharya & Yorulmazer (2007a,b)

Too many to fail problem. Regulator has two policy options

- 1. Imperfectly targeted policy: Bailout banks \Rightarrow Correlated investments *ex ante*
- 2. Targeted policy: Provide liquidity to successful banks to buy failed banks⇒ Uncorrelated investments

My paper: Bailout insurance firm

Explains why targeted policy cannot be used. The insurance firm creates a wedge between the banks and regulator. Targeted policy cannot be used as failure of insurer results in failure of all banks.

Literature review

Systemic risk

Farhi & Tirole (2011), Acharya & Yorulmazer (2007a,b, 2008), Acharya (2009), Allen & Carletti (2006)

Too big to fail and bailouts

 Stern & Feldman (2004), Strahan (2013), Kelly et al. (2016), Veronesi & Zingales (2010)

Counterpary risk

Thompson (2010), Acharya & Bisin (2014), Biais et al. (2016)

Outline

- 1. Model
- 2. Model solution
- 3. Policy implications
- 4. Extension

Model

- ▶ Banks (continuum) borrow from depositors (no insurance) and invest. Return R > 1 or L = 0
- If successful: Continuation value V

Risky investment

- Banks make a loan in an industry. Industry is in good state or bad state.
- If banks invest is same industry ($\rho = 1$) Two aggregate states (good and bad)
- If banks invest in different industries (ho=0), one aggregate state

•
$$\omega = q\alpha + (1-q)\beta$$
 receive R

Asset maturity and deposit contract

Benchmark case: Assets of a bank mature together at t = 1

No possibility of run on solvent banks

Realistic case: Assets do not mature together

•
$$\gamma = rac{1}{2}$$
 of assets mature at $t = 1 + \epsilon$

Possibility of run on solvent banks

Deposit contract: Face value D. Contract matures at t = 1 for both cases.

Insurance contract

- Insurance firms in Bertrand competition
- Banks collectively write contract with one firm
- \blacktriangleright Premium z
- Insurance firms stores the premium (benchmark)

Equilibrium

Equilibrium definition: Correlation (ρ), face value of deposits (D), premium (z) such that

- **>** Banks choose ρ , D and z to maximize profits
- Expected profit of depositors = 0
- Expected profit of insurance firm ≥ 0

Solution in two steps:

- Step 1: Solve for D, z for given ρ
- Step 2: Solve for optimal ρ

Outline

- 1. Model
- 2. Model solution
- 3. Policy implications
- 4. Extension

Analyze 4 scenarios

 $\begin{array}{ll} \mbox{Mature together, $\rho=0$} & \mbox{Not together, $\rho=0$} \\ \mbox{Mature together, $\rho=1$} & \mbox{Not together, $\rho=1$} \end{array}$

Ex post analysis: Assets mature together, $\rho = 0$

- \blacktriangleright Without insurance: $1-\omega$ banks fail and loose continuation value
- Regulator intervenes: Sells failed banks to successful ones
 - Profit transfer to regulator

Proposition: Banks write fairly priced insurance contract with $z = (1 - \omega)R$. Expected profit equals

$$\underbrace{\omega R - 1}_{NPV} + V.$$

$\rho=0,$ Assets do not mature together

What happens without insurance?

- ▶ Depositors do not observe returns ⇒ Run on banks
- Asset maturing at $t = 1 + \epsilon$ is sold to outside investors at price ωR
- Successful banks can raise $R/2 + \omega R/2$
- ► Assumption: R/2 + ωR/2 > 1 i.e. successful banks do not go bankrupt
- Failed banks sold to successful banks. Transfer to regulator.
- No Bailout

Proposition: Banks write fairly priced insurance contract with premium $z = (1 - \omega)R$. Expected profit $= \omega R - 1 + V$.

Why not write underpriced contract?

- No bailout of insurance firm
- Regulator will let the insurance firm fail and sell the failed banks to successful banks

$\rho = 1$, Assets do not mature together

Banks invest in same industry

Two aggregate states: Good and Bad

- Good state: α banks succeed
- Bad state: β banks succeed

 $\blacktriangleright \ \alpha > \beta$

Result: Banks will insure only for good state with premium $= (1 - \alpha)R$. Rely on bailout in bad state.

$\rho = 1$, Assets do not mature together

What happens in bad state with premium $(1 - \alpha)R$?

▶ Insurance company owes R/2 to each of $1 - \beta$ banks

• Assumption: Insurer announces bankruptcy at t = 1

► Failed banks are insolvent ⇒ Run on all banks

Systemic failure in bad state

• Banks can sell assets to outside investors at price βR

- Successful banks can raise $R/2 + \beta R/2$
- ► Assumption: $R/2 + \beta R/2 < 1 + \underbrace{(1 \alpha)R}_{premium}$. Successful banks also

go bankrupt

- ► Assumption: Regulator cannot observe returns ⇒ cannot act as LOLR for solvent banks
- Result: Regulator bails out insurance firm to prevent all counterparty banks from failing

Proposition

The equilibrium premium is $(1 - \alpha)R$. Banks are insured for the good state and rely on bailout in bad state. Risk is underpriced. Expected profit of banks is

$$\alpha R - 1 + V.$$

No bailout in the good state, so premium only prices the good state

▶ Net expected transfer from the regulator $= (1 - q)(\alpha - \beta)R$

Theorem: When assets do not mature together, *ex ante* banks prefer to make correlated investment.

Intuition

Imperfectly targeted policy implies banks want their assets to fail together *exactly* at the time of bailout

$\rho=1,$ Assets mature together

Theorem: When assets mature together, $\rho = 1$ cannot be an equilibrium. Intuition:

- ▶ Suppose $\rho = 1$
- If banks insure for good state (z = (1 − α)R): Regulator will sell the failed banks to successful banks in bad state ⇒ Profit transfer to regulator
- If banks insure for bad state $(z = (1 \beta)R)$: In good state **profit** transfer to insurer
- Hence a bank prefers to deviate ex ante and invest in a different industry and write fairly priced contract

Outline

- 1. Model
- 2. Model solution
- 3. Policy implications
- 4. Extension

Size cap on insurance firm

Proposition: Banks make uncorrelated investments.

Intuition

- Suppose banks make correlated investments and write underpriced contracts
- ► Size cap ⇒ Many insurance firms
- ▶ In bad state regulator bails out some insurance firm and not others
- Counterparty banks of bailed out firms survive. Others fail.
- Sell the failed banks to surviving banks. Regulator is able to extract some surplus or banks may be sold at fire sale price.
- Result: Banks find it profitable to deviate *ex ante* and invest in different industry

Central clearing counterparty

- CCPs may help create the crisis
- Over the counter markets are opaque
- CCPs more transparent: Help banks coordinate in writing insurance contract with the same insurer

Outline

- 1. Model
- 2. Model solution
- 3. Policy implications
- 4. Extension

Extension: Insurance firm can invest in an industry

- Suppose banks make correlated investments
- Will insurance firm invest in same or different industry?

Two aggregate states:

- Bad state results in bailout \Rightarrow Insurance firm earns no profit
- Good state: No bailout
 - lnsurance firm's return can be R or L (assume > 0)
 - Insurance contract s.t. banks are insured even if return is L

$$zL = (1 - \alpha)R$$

- So, insurer earns positive profit when its return is R
- ► Result: Insurer maximizes the probability of return R when the banks are in good state ⇒ Invest in the same industry

Conclusion

- Identify a new channel for systemic risk taking
- Explain why credit insurance may be underpriced
- Explain why insurance firms may not diversify
- Policy implications: Cap on size